Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.24.541920

ABSTRACT

Heterogeneity in SARS-CoV-2 vaccine responses is not understood. Here, we identify four patterns of live-virus neutralizing antibody responses: individuals with hybrid immunity (with confirmed prior infection); rare individuals with low responses (paucity of S1-binding antibodies); and surprisingly, two further groups with distinct serological repertoires. One group - broad responders - neutralize a range of SARS-CoV-2 variants, whereas the other - narrow responders - neutralize fewer, less divergent variants. This heterogeneity does not correlate with Ancestral S1-binding antibody, rather the quality of the serological response. Furthermore, IgDlowCD27-CD137+ B cells and CCR6+ CD4+ T cells are enriched in broad responders before dose 3. Notably, broad responders have significantly longer infection-free time after their third dose. Understanding the control and persistence of these serological profiles could allow personalized approaches to enhance serological breadth after vaccination.

2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.17.23290105

ABSTRACT

The emergence of successive SARS-CoV-2 variants of concern (VOC) during 2020-22, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics - such as varying levels of immunity - can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform COVID-19 planning and response, and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both inter-individual variation in Ct values and complex host characteristics - such as vaccination status, exposure history and age - we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least five prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.07.22277367

ABSTRACT

Introduction The impact of COVID-19 vaccination on disease in the community has been limited, as a result of both SARS-CoV-2 Variants of Concern that partially escape vaccine-induced immunity. We sought to characterise symptoms and viral loads over the course of COVID-19 infection in otherwise-healthy vaccinated adults, representative of the general population, to assess whether current self-isolation guidance remains justified. Methods In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive PCR or lateral flow test, self-swabbed on alternate days until day 10. We compared symptoms and viral kinetics between infections caused by VOCs Delta and Omicron (sub-variants BA.1 and BA.2) and investigated applicability of UK NHS isolation guidelines to these newer VOCs. Results 373 infection episodes were reported among 349 participants. Across VOCs, symptom duration was similar, however symptom profiles differed significantly among infections caused by Delta, Omicron BA.1 and BA.2. Anosmia was reported in <10% of participants with BA.1 and BA.2, compared to 42% with Delta infection, coryza fatigue and myalgia predominated. Most notably, viral load trajectories and peaks did not differ between Delta, BA.1 and BA.2, irrespective of symptom severity, VOC or vaccination status. Conclusion COVID-19 isolation guidance should not differ based on symptom severity or febrile illness and must remain under review as new SARS-CoV-2 VOCs emerge and population immunity changes. Our study emphasises the ongoing transmission risk of Omicron sub-variants in vaccinated adults with mild symptoms that may extend beyond current isolation periods.


Subject(s)
Hepatitis D , Fever , Olfaction Disorders , Common Cold , Myalgia , COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.20.488895

ABSTRACT

Two mutations occurred in SARS-CoV-2 early during the COVID-19 pandemic that have come to define circulating virus lineages: first a change in the spike protein (D614G) that defines the B.1 lineage and second, a double substitution in the nucleocapsid protein (R203K, G204R) that defines the B.1.1 lineage, which has subsequently given rise to three Variants of Concern: Alpha, Gamma and Omicron. While the latter mutations appear unremarkable at the protein level, there are dramatic implications at the nucleotide level: the GGG[->]AAC substitution generates a new Transcription Regulatory Sequence (TRS) motif, driving SARS-CoV-2 to express a novel subgenomic mRNA (sgmRNA) encoding a truncated C-terminal portion of nucleocapsid (N.iORF3), which is an inhibitor of type I interferon production. We find that N.iORF3 also emerged independently within the Iota variant, and further show that additional TRS motifs have convergently evolved to express novel sgmRNAs; notably upstream of Spike within the nsp16 coding region of ORF1b, which is expressed during human infection. Our findings demonstrate that SARS-CoV-2 is undergoing evolutionary changes at the functional RNA level in addition to the amino acid level, reminiscent of eukaryotic evolution. Greater attention to this aspect in the assessment of emerging strains of SARS-CoV-2 is warranted.


Subject(s)
COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1191603.v1

ABSTRACT

Not all patients with cancer, in particular those with hematogic malignancies, develop functional immunity against SARS-CoV-2 variants of concern (VOC) following COVID-19 vaccines. Durability of vaccine-induced immunity after two doses and the impact of a third dose were evaluated in CAPTURE (NCT03226886), a longitudinal prospective cohort study of vaccine responses in patients with cancer. In evaluating 316 patients, at a median of 111 days following two doses of either BNT16b2 or ChadOX, we observed a time-dependant decline in neutralising antibody titres (NAbT) in a proportion of patients, where NAbTs became undetectable against Delta and Beta in 17% and 15% of patients, respectively. Vaccine-induced T cell responses declined in 44% of patients. Patients with breakthrough infections following two vaccines doses were characterised by absent/low NAbT to Delta prior to infection. Administration of the third vaccine dose boosted NAb responses against VOC in the majority of patients with cancer, especially those with solid cancer. In patients with hematologic malignancies who had undetectable NAbT against Delta after two vaccine doses, 54% did not develop NAb against both Beta and Delta following the third dose. Third vaccine dose boosted T cell responses were boosted in patients with both solid and hematologic malignancies. These results provide critical information on vaccine responses in patients with cancer, especially against VOCs and support widespread access to a third COVID-19 vaccination in this patient group.


Subject(s)
COVID-19 , Meningeal Neoplasms , Hematologic Neoplasms , Neoplasms
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.30.470568

ABSTRACT

Several common-cold coronaviruses (HCoVs) are endemic in humans and several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current Coronavirus disease 2019 (COVID-19) pandemic. Whilst antibody cross-reactivity with the Spike glycoproteins (S) of diverse coronaviruses has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to or mediate protection, when induced naturally or through vaccination. Using a mouse model, we show that prior HCoV-OC43 S immunity primes neutralising antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, mouse vaccination with SARS-CoV-2 S2 elicits antibodies that neutralise diverse animal and human alphacoronaviruses and betacoronaviruses in vitro, and protects against SARS-CoV-2 challenge in vivo. Lastly, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induces stronger and broader neutralising antibody response than booster Wuhan S vaccination, suggesting it may prevent repertoire focusing caused by repeated homologous vaccination. The data presented here establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern (VOCs), as well as to unpredictable, yet inevitable future coronavirus zoonoses.


Subject(s)
Coronavirus Infections , COVID-19
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-916303.v1

ABSTRACT

CAPTURE (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable neutralizing antibody titers (NAbT) against SARS-CoV-2 variants of concern (VOCs) vs wild-type (WT). Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT vs solid cancers against both WT and VOCs. In comparison with individuals without cancer, patients with haematological, but not solid, malignancies had reduced NAb responses. Seroconversion showed poor concordance with NAbT against VOCs. Prior SARS-CoV-2 infection boosted NAb response including against VOCs, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T-cell responses were detected in 80% of patients, and were comparable between vaccines or cancer types. Our results have implications for the management of cancer patients during the ongoing COVID-19 pandemic.


Subject(s)
Neoplasms , Hematologic Neoplasms , COVID-19
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-916427.v1

ABSTRACT

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer.


Subject(s)
COVID-19 , Hematologic Neoplasms , Neoplasms
9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-355230.v1

ABSTRACT

We present a case of cytokine release syndrome (CRS) that occurred five days after vaccination with BTN162b2 (tozinameran), an mRNA COVID-19 vaccine, in a patient with colorectal cancer on long-standing anti-PD-1 monotherapy. The CRS was evidenced by raised inflammatory markers, thrombocytopenia, elevated cytokine levels (IFN-y/IL-2R/IL-18/IL-16/IL-10), and steroid responsiveness.


Subject(s)
Thrombocytopenia , COVID-19 , Colorectal Neoplasms
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.01.433314

ABSTRACT

We examined the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.7 that arose in the United Kingdom and spread globally. Antibodies elicited by B.1.1.7 infection exhibited significantly reduced recognition and neutralisation of parental strains or of the South Africa B.1.351 variant, than of the infecting variant. The drop in cross-reactivity was more pronounced following B.1.1.7 than parental strain infection, indicating asymmetric heterotypic immunity induced by SARS-CoV-2 variants.


Subject(s)
Coronavirus Infections
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248608

ABSTRACT

There is a pressing need to characterise the nature, extent and duration of immune response to SARS-CoV-2 in cancer patients and inform risk-reduction strategies and preserve cancer outcomes. CAPTURE is a prospective, longitudinal cohort study of cancer patients and healthcare workers (HCWs) integrating longitudinal immune profiling and clinical annotation. We evaluated 529 blood samples and 1051 oronasopharyngeal swabs from 144 cancer patients and 73 HCWs and correlated with >200 clinical variables. In patients with solid cancers and HCWs, S1-reactive and neutralising antibodies to SARS-CoV-2 were detectable five months post-infection. SARS-CoV-2-specific T-cell responses were detected, and CD4+ T-cell responses correlated with S1 antibody levels. Patients with haematological malignancies had impaired but partially compensated immune responses. Overall, cancer stage, disease status, and therapies did not correlate with immune responses. These findings have implications for understanding individual risks and potential effectiveness of SARS-CoV-2 vaccination in the cancer population.


Subject(s)
Neoplasms , Hematologic Neoplasms
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423682

ABSTRACT

Since the beginning of the global SARS-CoV-2 pandemic, there have been a number of efforts to understand the mutations and clusters of genetic lines of the SARS-CoV-2 virus. Until now, phylogenetic analysis methods have been used for this purpose. Here we show that Principal Component Analysis (PCA), which is widely used in population genetics, can not only help us to understand existing findings about the mutation processes of the virus, but can also provide even deeper insights into these processes while being less sensitive to sequencing gaps. Here we describe a comprehensive analysis of a 46,046 SARS-CoV-2 genome sequence dataset downloaded from the GISAID database in June of this year. SummaryPCA provides deep insights into the analysis of large data sets of SARS-CoV-2 genomes, revealing virus lineages that have thus far been unnoticed.

13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.29.20142430

ABSTRACT

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 40,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated standard operating procedure (SOP) for high-throughput SARS- CoV-2 detection by RT-LAMP in 25 minutes that is robust, reliable, repeatable, sensitive, specific, and inexpensive.

14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.10.20123281

ABSTRACT

Objectives: COVID-19 is spreading in long-term care facilities with devastating outcomes worldwide, especially for people with chronic health conditions. There is a pressing need to adopt effective measures prevention and containment of in such settings. Design: Retrospective cohort study assessing the effect of enhanced surveillance and early preventative strategies and comparing outcomes for people with severe epilepsy and other comorbidities Setting: Three long-term care facilities: Chalfont Centre for Epilepsy (CCE), St. Elisabeth (STE), and The Meath (TM) with different models of primary and specialist care involvement, in the United Kingdom Participants: 286 long-term residents (age range 19-91 years), 740 carers who had been in contact with the residents during the observation period between 16 March and 05 June 2020. Interventions: Early preventative and infection control measures with identification and isolation of symptomatic cases, with additional enhanced surveillance and isolation of asymptomatic residents and carers at one site (CCE) Main outcome measures: Infection rate for SARS-CoV-2 among residents and carers, asymptomatic rate and case fatality rate, if available. Results: During a 12-week observation period, we identified 29 people (13 residents) who were SARS-CoV-2 positive with confirmed outbreaks amongst residents in two long-term care facilities (CCE, STE). At CCE, two out of 98 residents were symptomatic and tested positive, one of whom died. A further seven individuals testing positive on weekly enhanced surveillance had a completely asymptomatic course. One asymptomatic carer tested positive after contact with confirmed COVID-19 patients in another institution. Since 30 April 2020, during on-site weekly enhanced surveillance all 275 caregivers tested repeatedly negative. At STE, three out of 146 residents were symptomatic and tested positive, a fourth tested positive during hospital admission for symptoms not related to COVID-19. Since April 6, 2020, 105/215 carers presenting with typical symptoms for COVID-19 were tested, of whom 15 tested positive. At TM, testing of symptomatic carers only started from early/mid-April, whilst on-site testing, even of symptomatic residents, was not available until recently. During the observation period, eight of 80 residents were symptomatic but none was tested. Twenty-six of 250 carers were symptomatic and were tested, of whom two tested positive. Conclusions: Infection outbreaks in long-term care facilities for vulnerable people with epilepsy can be quickly contained, but only if asymptomatic cases are identified through enhanced surveillance at individual and care staff level. We observed a low rate of morbidity and mortality which confirmed that preventative measures with isolation of suspected and confirmed cases of COVID-19 can reduce resident-to-resident and reverse resident-to-carer transmission.


Subject(s)
COVID-19 , Epilepsy
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.08.20120584

ABSTRACT

Abstract Background SARS-CoV-2 infection in Healthcare Workers (HCWs) is a public health concern during the pandemic. Little description has been made of their antibody response over time in the presence or absence detectable SARS-CoV-2 RNA and of symptoms. We followed a cohort of patient-facing HCWs at an acute hospital in London to measure seroconversion and RNA detection at the peak of the pandemic in London. Methods We enrolled 200 front-line HCWs between 26 March and 8 April 2020 and collected twice-weekly self-administered nose and throat swabs and monthly blood samples. Baseline and regular symptom data were also collected. Swabs were tested for SARS-CoV-2 RNA by polymerase chain reaction, and serum for IgM, IgA and IgG antibodies to the virus spike protein by enzyme-linked immunosorbent assay and flow cytometry. Findings We enrolled HCWs with a variety of roles who worked in areas where COVID-19 patients were admitted and cared for. During the first month of observation, 42/200 (21%) HCWs were PCR positive in at least one nose and throat swab. Only 8/42 HCW (19%) who were PCR positive during the study period had symptoms that met the current case definition. Of 181 HCWs who provided enrollment and follow-up blood samples, 82/181 (45.3%) were seropositive; 36/181 (19.9%) seroconverted during the study and 46/181 (25.4%) were seropositive at both time points. In 33 HCWs who had positive serology at baseline but were PCR negative, 32 remained PCR negative throughout follow-up. One HCW had a PCR positive swab six days after enrollment, likely representing a waning infection. Interpretation The extremely high seropositivity and RNA detection in this cohort of front-line HCWs who worked during the peak of the pandemic brings policies to protect staff and patients in the hospital environment into acute focus. Our findings have implications for planning for the expected second wave and for future vaccination roll out campaigns in similar settings. The further evidence of asymptomatic SARS-CoV-2 infection indicates that asymptomatic surveillance of HCWs is essential while our study sets the foundations to answer pertinent questions around the duration of protective immune response and the risk of re-infection.


Subject(s)
COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.14.095414

ABSTRACT

Several related human coronaviruses (HCoVs) are endemic in the human population, causing mild respiratory infections1. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a recent zoonotic infection that has quickly reached pandemic proportions2,3. Zoonotic introduction of novel coronaviruses is thought to occur in the absence of pre-existing immunity in the target human population. Using diverse assays for detection of antibodies reactive with the SARS-CoV-2 spike (S) glycoprotein, we demonstrate the presence of pre-existing humoral immunity in uninfected and unexposed humans to the new coronavirus. SARS-CoV-2 S-reactive antibodies were readily detectable by a sensitive flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. These were predominantly of the IgG class and targeted the S2 subunit. In contrast, SARS-CoV-2 infection induced higher titres of SARS-CoV-2 S-reactive IgG antibodies, targeting both the S1 and S2 subunits, as well as concomitant IgM and IgA antibodies, lasting throughout the observation period of 6 weeks since symptoms onset. SARS-CoV-2-uninfected donor sera also variably reacted with SARS-CoV-2 S and nucleoprotein (N), but not with the S1 subunit or the receptor binding domain (RBD) of S on standard enzyme immunoassays. Notably, SARS-CoV-2-uninfected donor sera exhibited specific neutralising activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes, according to levels of SARS-CoV-2 S-binding IgG and with efficiencies comparable to those of COVID-19 patient sera. Distinguishing pre-existing and de novo antibody responses to SARS-CoV-2 will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Zoonoses , COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.21.20073833

ABSTRACT

Background: Cancer diagnostics and surgery have been disrupted by the response of healthcare services to the COVID-19 pandemic. Progression of cancers during delay will impact on patient long-term survival. Methods: We generated per-day hazard ratios of cancer progression from observational studies and applied these to age-specific, stage-specific cancer survival for England 2013-2017. We modelled per-patient delay of three months and six months and periods of disruption of one year and two years. Using healthcare resource costing, we contextualise attributable lives saved and life years gained from cancer surgery to equivalent volumes of COVID-19 hospitalisations. Findings: Per year, 94,912 resections for major cancers result in 80,406 long-term survivors and 1,717,051 life years gained. Per-patient delay of six months would cause attributable death of 10,555 of these individuals with loss of 205,024 life years. For cancer surgery, average life years gained (LYGs) per patient are 18.1 under standard conditions and 15.9 with a delay of six months (a loss of 2.3 LYG per patient). Taking into account units of healthcare resource (HCRU), surgery results on average per patient in 2.25 resource-adjusted life years gained (RALYGs) under standard conditions and 1.98 RALYGs following delay of six months. For 94,912 hospital COVID-19 admissions, there are 474,505 LYGs requiring of 1,097,937 HCRUs. Hospitalisation of community-acquired COVID-19 patients yields on average per patient 5.0 LYG and 0.43 RALYGs. Interpretation: Delay of six months in surgery for incident cancers would mitigate 43% of life years gained by hospitalisation of an equivalent volume of admissions for community acquired COVID-19. This rises to 62% when considering resource-adjusted life-years gained. To avoid a downstream public health crisis of avoidable cancer deaths, cancer diagnostic and surgical pathways must be maintained at normal throughput, with rapid attention to any backlog already accrued. Funding: Breast Cancer Now, Cancer Research UK, Bobby Moore Fund for Cancer Research, National Institute for Health Research (NIHR)


Subject(s)
COVID-19 , Neoplasms , Breast Neoplasms
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.19.20071373

ABSTRACT

The emergence of the novel coronavirus SARS-CoV-2 has led to a pandemic infecting more than two million people worldwide in less than four months, posing a major threat to healthcare systems. This is compounded by the shortage of available tests causing numerous healthcare workers to unnecessarily self-isolate. We provide a roadmap instructing how a research institute can be repurposed in the midst of this crisis, in collaboration with partner hospitals and an established diagnostic laboratory, harnessing existing expertise in virus handling, robotics, PCR, and data science to derive a rapid, high throughput diagnostic testing pipeline for detecting SARS-CoV-2 in patients with suspected COVID-19. The pipeline is used to detect SARS-CoV-2 from combined nose-throat swabs and endotracheal secretions/ bronchoalveolar lavage fluid. Notably, it relies on a series of in-house buffers for virus inactivation and the extraction of viral RNA, thereby reducing the dependency on commercial suppliers at times of global shortage. We use a commercial RT-PCR assay, from BGI, and results are reported with a bespoke online web application that integrates with the healthcare digital system. This strategy facilitates the remote reporting of thousands of samples a day with a turnaround time of under 24 hours, universally applicable to laboratories worldwide.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL